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The ground-state and thermal properties of a two-dimensional array of 
Josephson coupled superconducting wires is studied. For rational values of the 
magnetic flux per plaquette, mean-lield theory provides an accurate description 
and the system makes a transition to a vortex state. For small wdues of the 
magnetic Ilux per plaquette, mean-field theory also provides an adequate 
description. The measurement of critical currents can provide information on 
the ground state. 
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1. I N T R O D U C T I O N  

In this paper  we study the ground-s ta te  and thermal properties of  a model  
proposed  by Vinokur  et  al. ~l) This model  consists of  N vertical and N 
horizontal  superconduct ing filaments or wires arranged in two parallel 
planes in such a way that each vertical filament is connected by Josephson 
junct ions to each horizontal  filament and vice versa. A perpendicular  
magnetic field is applied to the planes. The energy E 0 of  an individual 
Josephson junct ion is much smaller than the transition temperature of  a 
filament. We neglect induced fields due to currents in the junct ions and in 
the filaments, since they are much smaller than the external magnetic  field. 
Also, at temperatures not  close to the superconduct ing transition of  an 
individual wire, fluctuations of  the modulus  and phase of  the order  
parameter  in the wire can be neglected. Each wire is then described by its 
phase and we denote the phase of  the vertical and horizontal  wires by ~b~. 
and ~b i, respectively (k, j =  1 ..... N). As the junct ions are weak, the current 
flowing in any individual wire is small and its effects are neglected. 
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Geometrically, this model, in which each vertical wire interacts with each 
horizontal wire and vice versa, has some features of an infinite-range 
model. Vinokur et al. c~ and Chandra et al. ~31 have studied the disordered 
array, in which the distance between neighboring wires is assumed to be 
random, and have shown that it behaves like a vector spin glass. In this 
paper we study the case of a uniform array and show that it is analytically 
solvable in certain cases. The uniform array has also been studied by 
Chandra et al., ~3~ but for a different range of the flux. 

With the assumptions above, the energy of the array takes the form 

N - - I  

E ( 2 ~ / ~ ) = - - E  o ~ cos(r 
.i, k = o  

(1) 

where ~ = 2~zHa'-/Cpo, H is the external magnetic field, a is the wire spacing, 
and q~o is the flux quantum. This Hamiltonian is analogous to that of an 
X Y  model in which the interaction is modulated by the magnetic field. 

2. S Y M M E T R Y  PROPERTIES 

We consider the symmetry properties of the model in the case ~ = 2zc/n 
(n < N). In order to avoid edge effects, we use periodic boundary condi- 
tions and suppose that n is a divisor of N. The energy is then invariant 
under the transformation 

2rcmk 2nmj 
r 1 6 2  ~kj--,~kj+,,, or f f . j ~ l k . i - - - ,  ~bk~r (2) 

n n 

where m is an integer and we only need to consider m = 1 ..... n - 1. Under 
this transformation a correlation function 

( e a 4,, - ,h/I ) = e 2-i,,,~ k - z v,, ( e a ~, - r } (3) 

where the angular brackets indicate a thermal average with Boltzmann 
factor e -/'c~''~. Thus, we conclude that the correlation functions 

( e  a~'k-~,~} =A(n,  T) Ok.z (mod n) (4) 

with a similar result for the ~b variables. Here A(n, T) is a factor depending 
on n and temperature. In particular, for n = N, all the ~b (or qJ) variables are 
uncorrelated. Higher order correlation functions, such as ( exp  i(~bk, + ~b~._,- 
~bk 3 -- ~bk 4) ) ,  will vanish unless k j + k2 - k 3  - -  k4 = 0 (mod n). 
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F o r  the mixed correlat ion functions of  the ~b and  ~b variables,  applica-  
t ion of  (2) gives 

F k  j ~ < eiC 4,k - ,19) ) = e 2him, k / , , (  e" ~ - 'PJ*,,,, ) )  

= e2ni , , , ,J / .< ei(4,k + .,,. - Oj ) )  

=e2'~i""'k +""-J+""'"'-)/"( ei~'hk+,,,2-%+,,,, ~ ) (5) 

These relat ions enable  us to relate all the pair  correlat ion functions to 
a single one, say Foo. Thus,  

The  energy is given by 

F~j = e - ~-"ik//"Foo (6) 

( E )  = - Eo Re ~ e2"i~J/"F t j  
kj 

= --  Eo N 2  Re Foo (7) 

These symmetry  propert ies are broken  in the ordered state, as we show below. 

. GROUND-STATE ENERGY 

We can write the energy (1) in the form 

E ( n )  - E o N  N - I  
2 ~ ( e - ; '%g /+  c.c.) 

j = 0  

where 

(8) 

I N - - I  
g i=~  r, e*~+2"~J*/" (9) 

k = O  

is an effective field, acting on the ~b variables due to the ~b variables. The 
energy is minimized by choosing ~b i = arg g j, so that  

N--I 

E a ( n ) = - - E o N  ~ [gi[ (10) 
j = o  

There  are only n distinct values of  g,. w i t h j  = 1 ..... n - 1 so that  (we suppose 
p7 is a divisor of  N) 

N 2 . - I  

E ~ ( n ) - - - E o - -  Y', Igjl (11) 
n .i=o 
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We must now choose the ~ to minimize this energy. For n = 1 it is 
and E c ; ( 1 ) = - E o  N2. As an example we consider n = 2 .  We can 

go=�89  gl = �89  (12) 

2 2 
h , , = ~  Z ei ' /" ,  h,=~ E ei'l'* 

k I c v c n  ) k ( o d d )  

I 2 Ee(2) = - z E , , N  (Ih,, + h , l +  l h , , - h j  I) (13) 

The energy is minimized with respect to the phases and magnitudes of h. 
and h t. The minimum occurs when they differ in phase by n/2 and 
Ih,,I = Ih, I = 1, giving 

Ee(2) = -- Eo N 2/,r ( 14 ) 

This procedure can be generalized for any integer n by writing 

1 " ~  tt e 2'qik''' �9 - k ( 1 5 )  gi=n k=~) 

where 

N / H  - I 
17 

h , = - ~  Y' e i'I'*-~,,', k = 0  ..... n - 1  (16) 
I =  () 

Again we minimize with respect to the phase and magnitude of/z,. The mini- 
mum is obtained when all the f gj[ are equal and the hr. are "perpendicular": 

n - -  [ 

hkh* m=0,  m = l  ..... n - -1  (17) 
k = 0  

1/n~t~'" I [llkl2)l"2=n-t/2 and Then Ig j [=(  , ,,z_.,.=o 

Ee(n ) = - Eo N 2/x/~7 ( 18 ) 

To get a finite energy per wire we need Eo oc 1/N. In particular, for n = N 
the ground-state energy is 

E~;(N) = - Eo N 3/,_ ( 19 ) 
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which requires Eo ~ 1IN I/2 in order  that  the energy/wire be finite. A solu- 
t ion of  (17) is 

h k = e nik2''n + i~ 11 even 

= e 2"ik '/" + i~ n odd (20) 

This solution has per iod n and cor responds  to 

Sk = rck-" + 0~ n $ ' = - r c J 2 + o ~  " n (mod 2~) ( , , even)  

2~k 2 ~j2 
= + 0o, 6 j -  2n ~O,,+qi,, (mod  2~) (,7 odd)  

(21) 

where c i , ,=0  (rm/2) for j even (odd),  and where 0 , ,=0o ,  0 o + g / 2  for 
n = 1, 5 .... or  n = 3, 7 ..... The  phase  increases f rom one wire to the next. We 
can visualize the solut ion as a series of  Josephson  vortices, each vortex 
corresponding to a change in phase by 2m Both solutions are periodic in n. 
In (21 ) we can replace k --, k + m with m = 0 ..... n - 1 giving a degeneracy 
of  at least n. 

Proper t ies  of  the g round  state can be obta ined  by measur ing  critical 
currents. Suppose  a current  I enters each vertical wire and the same current  
I exits f rom each horizontal  wire. We then solve 

j,, ~ s i n  dpa.--qij+--7---7 ) = I  (22) 
i 

with a similar equat ion  (with - I )  for the horizontal  wires. A solution is 

r& 2 - rcj 2 r~ 
~b,.= 11 + 0 o ,  ~bj= n + 0 o - - 4  (23) 

i.e., the relative phase  ~b k - ~b i is changed by n/2 f rom (21). The  critical 
current  is I,. = Jo N /n  t/2. 

4. THERMAL PROPERTIES 

The par t i t ion function is given by 

ff Z = .  e JO \ 2 r c / \ 2 r c /  
-/~EI,,I (24) 
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and writing E(n) in the form (8), we can integrate over the ~ variables, 
giving 

IN 1 Z = f  ~ exp ~ In Io(x I&l) 
Lj=O 

(25) 

where x =flEoN and the effective field g/is given by (9). As there are only 
n different values of gj, (25) becomes 

Z =  ~nn exp ~ lnlo(xlg:l) (26) 
j=0  

In the cases where lim(N/n) = ~ this integral can be evaluated by station- 
ary phase. It is convenient to first transform to an integral over the g: by 
including a factor 

, , -  ( 
I-~ N2 f d2gid Ng:,.- cos ~bk+ 

j=0  k=l  

xc~(N&,.- ~" s in (~k+2n jk ) )  
" e = ~  n / /  

(27) 

After exponentiating the delta functions using 

] fi~, = ek.,dk ~(x) ~ -,.~ (28) 

we can carry out the integrals over the ~b k. A change of variables from the 
kj of (28) to 

It-- I 
h k =  E kJ e-2n~i~/" (29) 

.i = o 

brings Z into the convenient form 

N2. f (d2gd.,h)ex p N ,,-i Z =  ( f ,=oln ,gj,) n ~ [Io(x /0('hi')] 

1 , , -  I ") \  
---~ ~ (h~e-2'~iJk/"gi+c.c)~) (30) 

k,j=O 
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It is now suitable for evaluation by stationary phase. This leads to the 
equations 

I t - -  I 

xl,(x I&l) & = Z e'-'"Uk/"hk (31) 
Io(x I&l) Igjl k=o 

n - -  I 

I,(Ihkl) hk _ ~ e_2,,uk/,,gi (32) 
Io(Ihkl) Ihkl j=0 

The critical temperature is obtained by linearizing these equations 

X 2 n - -  I [ n -  I 

--~ g.i = E e2'~~ ., ~l 'k = E e~-'~~ 
k = 0  j = 0  

which gives x2/4 = n or 

(33) 

E o N  
kT,. - (34) 2,/; 

A finite T,. requires Eo ~ 1IN. 
The free energy in the disordered phase above 7",. is obtained by 

expanding the argument of the exponential in (30) keeping only quadratic 
terms. After choosing the contour for the g and h variabIes appropriately 
we find for the free energy 

log 5 )  + onst (35) 

The stationary-phase procedure is only justified when 

n 
lira 0 

Nevertheless we might expect that the above mean-field theory would give 
qualitatively reasonable results in other cases. In particular for n = N, 
k T , . = E o v / ' N / 2  and the fluctuation free energy (35) is proportional to 
EoN3/~-. 

Another case of interest is ~ = 2n~, where ~ is an irrational number. 
We can approximate ~ ~ p / n  when p and n are mutually prime integers 
which both tend to infinity. The above results for ~ = 2rein are also correct 
for ~ ~ 2rcp/n, but require n < N. Qualitatively we see that the ground-state 
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energy (18) and transition temperature (34) decrease in magnitude as n 
increases and we approach an irrational number. However, the limit 
n ---, ~ ,  p ~ ~ is not justified. 

For irrational ( the transformation (29) cannot be used and the 
linearized mean-field equations take the form 

x ~- 1 N-I 
--2 gi=Nkj' gJ=2---N ~ e'-'~ick~/-J'~k" (36) 

k .  i = o 

which leads to the equation 

N~, (sin_~N<j--j ')) , gj= 
j'=o \ sin rc~(j-j ') J gi' (37) 

where we have put 2 = 4(kT,./Eo) 2. We require the maximum eigenvalue of 
this equation. A limit can be placed on this by using a variational method, 

t"-t - [sinn~N(j-J') '~ / ~  -" 
E g; (38) 

J , . i "  = o 

As a variational solution, choose g j =  1 for one value of j and zero 
otherwise. Then 2m.,x >1 N, kT,. > • ~r ~/2 demonstrating the existence of a , ,  2 L ' 0  z v  

transition (in the mean-field approximation if Eo ~ N- .2) .  

5. OSCILLATIONS OF THE GROUND STATE 

We assign a capacitance Co and ohmic conductivity ao to each 
junction. The phase variables then satisfy the time-dependent equations 

"~ N-I 

+ N -  i~o sin(~b~. -q/i+ot.ki) = Ik (39) 

"~ N - I  �9 -" o)~ 
@ - ~ b + y ( ~ / - ~ ) - - - ~ -  ~' s in(~bk-@,+Mr (40) 

k = 0  

where y=ao/Co and ogo=4e2Eo/h2Co (6o o is the Josephson plasma 
frequency of a single junction). ~ and ~ are the average phases 

- 1 N=I i ~ 
Z ,h-, (41) 

k = O  j = O  
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and for  cur rent  conserva t ion  

EIk=E], 
k j 

905 

To investigate the plasma frequencies in the case o~=2n/n  we set 
I ,  = J / =  0 and linearize these equations around the ground state by setting 

,.ho + ~, = dl ~ 4- d/' , = vk ~,k, ffi ~i -~ '~ ,  where the index zero indicates the ground-state 
configuration. Then, using (21), we get 

(02 o oo) ) 
~ + ~ N + T _ ~  (r  =o 

(42) (0 2 o 
+ n'/2/ 

~-72 + y (r 

The solutions of these equations are all of the form 

r = ae 2"k/g i,,,,, ~k~ = be ~-'~u/u- i,,,, (43) 

with dispersionless modes satisfying 

- -  ~ I /"J  co z io)y -- ~oo/n - = 0 (44) 

which gives a reduction in the plasma frequency by a factor n u,4. 

6. SLOWLY V A R Y I N G  PHASE 

We can also obtain results in the case that cr is small and the phases 
r and ~bi vary slowly from wire to wire in the ordered state. This requires 
that aN,~ 1. The energy is written in the two forms 

E =  Eo N-~ - - ~ -  Z (e iCkfk+C.C) 
k = 0  

/..,~L-" 0 N -  I 

= - - T  Z ( e - i ' P ' ~ i + c ' c )  
j = 0 

N - I  

f k  = Z ei%-i~~ 
j = 0 

j = 0 

g . /  = Z e ir + i ~ )  

k = O  

(45) 

(46) 
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When aN < 1 and the phase is slowly varying we can replace sums by 
integrals, fk and ~j in (45) are then the sum of a large number of terms, 
fluctuations should be small, and we can replace them by averages. We 
then get mean-field Hamiltonians for the ~b and ~b variables 

Eo 
E,/, = - -~- ~ (e - i4'k f k  + c.c) 

Eu, Eo = - - -  - g i  + c . c )  2 ~ ( e  "~J 
J 

(47) 

where f and g are averages which we determine self-consistently from the 
equations 

( d ~ , )  e x p ( - - f l E , # . f k )  

A = J~ (d~)exp(-f iE, / , )  ' 
gJ = j (d~b) exp( - f i E 4 ,  ~j)  (48) 

d~b exp(-/~E, h) 

Carrying out the integrals, we get 

~I,(6 Igjl) g i -i~j 
f k  = . l o (g  Ig~l)levi e (49) 

1,(6 IAI) J2. e,,~ 

g J = ~  lo(6 IAI)IAI 
(50) 

where 6 = f lEo.  
When a N <  1 we can replace the sums by integrals with f k - - f ( x )  and 

gi -- g(Y), giving 

1 itLdyIt(61g(y)[) g(y) _;~,:,./,,_, 
f ( X ) = a  , lo (6  lg(Y)l)[g(Y)[ e (51) 

with a similar equation for g ( y ) .  Here a is the wire spacing. A solution to 
these equations is provided by 

f ( X )  zie -iax'-/2''-+i)' " " ~ ' = , g ( Y )  = A e  '~'.'-/-'-+i/~ (52) 

Edge effects can be neglected if 0cN2> 1. This is a solution provided 

(mo = l (53/ 
,, ~ / Io (6A  )'  P = ~' - - 4  
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Linearizing the first equation given 

and for T < T,. 

At T = 0 ,  
phases are 

907 

(&~ ,/2 
kT, .  = Eo \2~r (54) 

\ E o /  \ 

zl=(2n/or ~/2 and in the continuum approximation the 

1 x -~ n 
~(x) = - ~  ~ ~ + / ~ + ~  

~b(y) = ~  y2 7~ 
- - +  )'---- 
a 2 4 

/ 2 n \  I,,2 
E a  = - E o N  ~ ' - ~ )  

The ground-state energy is 

(56) 

(57) 

where y - fl  - n / 4  = 0 (mod 2n). For y - -  fl - -  n / 4  = n ( m o d  2n) the energy is 
a maximum and the critical current is I , . = j o ( 2 n / o O  ~/'-. The phases again 
give a ground state in which we have an array of Josephson vortices. These 
results break down if ~ < 1IN'-,  as the number of vortices in the system goes 
to zero. This leads to an estimate of the lower critical field for the 
appearance of vortices as H,.t = q~o/N2a 2. 

7. C O N C L U S I O N  

We have studied the thermal and ground-state properties of a regular 
2D array of 2N superconducting wires in a perpendicular magnetic field 
coupled by'Josephson junctions. The order parameter phase is assumed 
constant along the length of a wire--a model proposed by Vinokur et  al. tl~ 

The important parameter is the magnetic flux per plaquette a/(2n) 
measured in units of the flux quantum. Fluctuations are negligible when 
oc = 2 n p / n  (p, n relatively prime integers with n < N) and for ~ ,~ 1 / N  and 
the model is solvable by mean-field methods. If the coupling energy is 
scaled appropriately with N (the scaling depends on ~), the model shows 
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a mean-field transition to a vortex state. Fluctuations appear not to be neg- 
ligible for ~ ~  2n/N. It may be possible to use our results to interpolate 
between ~=2np/n and ~,~ 1/N to obtain qualitative results in this region. 
Thus the formulas for the transition temperature (34) and (54) and the 
ground-state energy (18) and (57) match at r 2n/N. Our analytic results 
are confined to the above special values of c~/(2n) and do not give informa- 
tion on the behavior when this quantity is irrational or when there is a 
small amount of disorder in the system. The mean-field transition tem- 
perature (34) for rational values of ~/(2n) is larger than that estimated for 
irrational values [see below (38)] by the large factor (N/n) 12. This 
suggests that there may be a strong preference for the system to lock onto 
rational values. 
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